A Quasifibration of Spaces of Positive Scalar Curvature Metrics
نویسنده
چکیده
In this paper we show that for Riemannian manifolds with boundary the natural restriction map is a quasifibration between spaces of metrics of positive scalar curvature. We apply this result to study homotopy properties of spaces of such metrics on manifolds with boundary.
منابع مشابه
On Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملWarped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملJu l 2 00 3 Scalar Curvature , Covering Spaces , and Seiberg - Witten Theory
The Yamabe invariant Y(M) of a smooth compact manifold is roughly the supremum of the scalar curvatures of unit-volume constant-scalar-curvature Riemannian metrics g on M . (To be precise, one only considers those constant-scalar-curvature metrics which are Yamabe minimizers, but this technicality does not, e.g. affect the sign of the answer.) In this article, it is shown that many 4-manifolds ...
متن کاملSolution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar
The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...
متن کامل2 00 1 Curvature , Covering Spaces , and Seiberg - Witten Theory
We point out that there are compact 4-manifolds which do not admit metrics of positive scalar curvature, but nonetheless have finite covering spaces which do carry such metrics. Moreover, passing from a 4-manifold to a covering space sometimes actually changes the sign of the Yamabe invariant. As was first pointed out by Bérard Bergery [1], there exist, in dimensions ≡ 1 or 2 mod 8, n ≥ 9, cert...
متن کامل